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Summary 

In Part I of this report, we present our efforts in exploring a new type of traffic data, 

referred to as internet-connected vehicle or ICV data for traffic congestion management 

and operational planning. Most currently manufactured vehicles contain on-board GPS 

and cellular modules, and they constantly connect to automobile manufacturers’ clouds 

via cellular networks and upload their status. Some automobile manufacturers have 

recently redistributed the non-personal part of such data, such as geolocation, to the 3rd 

party for innovative applications. Compared with the traditional vehicle GPS data, the 

ICV data contain high-resolution GPS waypoints accompanied with the vehicles’ 

abnormal moving events (e.g., hard braking). The ICV data also has huge potential in 

congestion management and operational planning. We explore to identify and analyze 

congestions on both freeways and arterials using the ICV data. The ICV data adopted 

for this research are redistributed by Wejo Data Service Inc., representing 10% to 15% 

of all moving vehicles in the Dallas-Fort-Worth (DFW) area in Texas. Through one case 

study for a freeway segment and one for an arterial segment, we present new traffic 

performance metrics based on the characteristics of ICV data. The highlights of these 

efforts include (I) queue length and propagation at freeway bottlenecks can be directly 

measured based on where and when most internet-connected vehicles slow down and 

join the queue; (II) an internet-connected vehicle’s actual delay time on arterials can be 

directly measured according to its slow movement percentage, without assuming the 

non-delay travel speed; (III) the ICV data set are also combined with the high-resolution 

traffic signal events to generate a "ground-truth" time-space diagram (TSD) on arterials, 



 

 

 

 

 

  

          

  

            

         

           

        

         

          

          

         

         

            

         

           

             

             

      

      

             

            

  

       

     

a common visualization of arterial signal performance for transportation planning and 

operations. 

In Part II, we explore the data generated by emergency vehicles and the impact on traffic 

operations. Emergency Vehicles (EVs), such as firetrucks, ambulances, etc. operate with 

the purpose of saving lives and mitigating property damage. Even small delays in their 

arrival could lead to catastrophic consequences. Emergency vehicle preemption (EVP) is 

implemented to provide the right-of-way to EVs by displaying the green indications solely 

along the EV route to the incident location. This paper evaluates the effectiveness of 

different preempt control strategies over a series of signalized intersections on an arterial 

in Norcross, Georgia. The study proposes a strategy, terming it “Dynamic Preemption”, 

which utilizes Connected Vehicle (CV) technology to detect the need for preemption prior 

to the EV reaching the vicinity of the intersection, utilizing real-time data streams. 

The best EVP strategy maximizes the improvement in EV route while minimizing the 

adverse effect of preemption on the traffic in conflicting directions. Therefore, the 

effectiveness of EVP is measured for: (a) the EV route, which is chosen to be along the 

mainline for this case study, and (b) the side streets, which are expected to be adversely 

affected by preemption. The study tests different preemption strategies under varying 

scenarios over multiple replicates runs and provides a methodology for selecting the most 

favorable control strategy. It was seen that the potential exists, for the given corridor and 

scenario, for EV travel time improvements on the order of 25% with minimal impact to the 

conflicting traffic. 

Key words: Crowdsourced data, connected vehicle, congestion management, Traffic 

Signals, Emergency Vehicle Preemption, preemption, dynamic preemption 
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1. Introduction 
The era of mobile computing enables ubiquitous smartphones, in-vehicle internet-of-

things (IOT) devices as well as connected and automated vehicles. Vehicles and 

infrastructure are connected in multiple ways. One approach is through crowdsourcing. 

The mobile devices are generating rich traffic data sets of new types, which will be 

supplemental to the infrastructure sensors maintained by public agencies to better plan 

the traffic congestion management heavily driven by data. Collecting and maintaining 

infrastructure sensors at large scale requires a huge amount of construction and recurrent 

operational costs. Furthermore, infrastructure sensors are fixed-spot and therefore they 

cannot provide a full-spectrum of traffic conditions. Most agencies today still use the traffic 

data collected via fixed-spot infrastructure data for performance monitoring, such as 

inductive loops, road-side cameras and radar sensors (Xu et al. 2016). Some agencies 

also adopt automated vehicle identification techniques, such as Toll Tag ID (Turner et al. 

2000) and Wi-Fi/Bluetooth MAC address matching(Li and Souleyrette 2016; Namaki 

Araghi et al. 2016). While these techniques are proven effective, bias are inevitable 

because the agencies have to empirically select sensors’ locations and use point-to-point 

vehicle ID matching mechanism to represent the entire highway segments. In reality, 

congestions and bottlenecks may occur at any place and they contribute to a major 

portion of congestions on highways. Infrastructure detectors can only report the traffic 

conditions at certain fixed spots. As a result, the corresponding traffic performance 

monitoring is inevitably biased. One straightforward solution is to deploy infrastructure 

sensors more intensively to narrow the link segments while this option may be not cost-

effective to agencies. On arterials, while intersections are explicit bottlenecks, hidden 

bottlenecks often exist at mid-block drive ways or two-way left-turn lanes. Such hidden 



 

 

 

 

 

  

       

  

            

         

        

      

         

        

          

          

       

        

          

                 

         

          

         

            

           

    

         

            

          

bottlenecks can hardly be identified with traditional traffic analytics or fixed-spot detector 

data. 

To overcome these challenges and to provide new cost-effective solutions, we exploit the 

potential of emerging internet-connected vehicle (ICV) data in congestion management. 

The ICV data are passively crowdsourced and collected by automobile manufacturers. 

Most currently manufactured vehicles constantly connect to automobile manufacturer’s 

clouds and upload their real-time status (e.g., the GMC’s “OnStar”, an add-on service 

based on subscriptions). Some automobile manufacturers have recently decided to 

redistribute such data sets (after removing the private info) to the 3rd party for innovative 

mobility applications. Compared with the traditional vehicle GPS data set, the ICV data 

contain high-fidelity waypoint locations accompanied with abnormal events (e.g., hard 

braking) while vehicles are moving. After some preliminary experiments, we conclude that 

the ICV data are highly accurate and hold great promises in congestion management. 

The ICV data are based on vehicle trips. Each trip will be allocated with a unique ID. For 

each waypoint of a trip, vehicle’s instantaneous latitude, longitude, current timestamp, 

speed and heading are provided. Abnormal vehicle maneuvers (e.g., hard braking) are 

also collected from on-board units. The ICV data for this study are procured from Wejo 

Data Service which is licensed by the General Motors. The penetration of the ICV data 

we studied represent 10%~15% of all moving vehicles in the Dallas-Fort-Worth (DFW) 

area, Texas, US. 

The paper is organized as follows. Literature on traffic data collection and applications is 

reviewed first; then a scalable framework of processing the ICV data is presented. Third, 

two case studies are conducted to find the hidden highway bottlenecks, accompanied 



 

 

 

 

 

  

            

         

   

   
       

        

             

        

           

             

          

        

        

           

          

        

     

             

         

         

            

         

            

with new performance metrics based on the ICV data sets; Third, we present new traffic 

performance metrics on arterials based on the ICV data and high-resolution traffic control 

log data. 

2. Literature review 
Congestion management on highways focus on bottleneck identification and mitigation. 

Traditional methods to discover bottlenecks mostly are based on infrastructure sensors. 

With fixed-spot detectors, Chen et al. design a statistical method to identify the possible 

appearance of bottlenecks on freeways by comparing the speed differences between the 

upstream and downstream locations. If the speed difference is more than 20 miles per 

hour, then a bottleneck is identified (Chen et al. 2004). Other than the speed reduction 

between locations, bottlenecks on freeways can also be identified by the duration of 

speed reduction at certain locations (Banks 2009), by the reduction of traffic volumes 

(Bertini 2003), by occupancy changes (Hall and Agyemang-Duah 1991; Zhang and 

Levinson 2004). The advantage of the fixed-spot detectors is that they can almost capture 

100% of vehicle presence (if lane-by-lane detection is configured) and therefore reported 

results are accurate. However, selection of sensor locations is very important and hidden 

bottlenecks may be difficult to find. 

Transportation agencies also explore to capture and match a small portion of vehicle 

“signatures” to collect segment travel time samples. The vehicle “signatures” refer to 

unique in-vehicle IDs. Through various road-side sniffing devices deployed at different 

locations, those unique vehicle IDs can be captured and re-matched. The time difference 

between road-side devices is considered a segment (i.e., space) travel time sample. 

Available vehicle signatures include but are not limited to: probe vehicle with known IDs 



 

 

 

 

 

  

         

            

         

            

            

                 

              

          

          

       

            

          

             

        

          

        

      

             

            

          

            

          

           

(Hofleitner et al. 2012), toll tags series numbers (Turner et al. 2000), license plate 

numbers (Bertini et al. 2005; Xu et al. 2011), cellphone locations (Qiu et al. 2009), 

vehicle’s optical image identification (Kuroiwa et al. 2007), vehicles’ magnetic signature 

matching (Charbonnier et al. 2012; Kavaler et al. 2011; Kwong et al. 2009; Sanchez et 

al. 2011; Sanchez et al. 2011) and Bluetooth MAC address matching(Bakula et al. 2012; 

Barcelo et al. 2010; Brennan et al. 2010; Haghani et al. 2010; Hainen et al. 2011; Quayle 

et al. 2010; Richardson et al. 2011). Segment travel time is a direct indictor of road 

congestion and considered superior to the estimated travel time by the fixed-spot 

detectors. Nonetheless, there are also challenges in leveraging between screening the 

sample outliers and sample sizes. For instance, the commonly used Bluetooth-based 

travel time estimation method, the sample size is usually less than 5%. To increase the 

capturing rate, high-gain antennas (with the sensing radius of 1,000 or more feet) must 

be used, resulting in large measure errors. In the meanwhile, vehicles are not tracked 

between two locations and their abnormal behaviors (e.g., pullover) cannot be tracked. 

As a result, the sample outliers must be screened. Other techniques also have their own 

drawbacks. Many research efforts have been dedicated to address these issues. As 

examples, A framework including multiple heuristic steps to process the Bluetooth-based 

travel time samples were designed by Hagahni et al. (Haghani et al. 2010) In their 

framework, a set of 24-hour historical travel time samples are selected to infer the travel 

speed’s distributions. A moving standard deviation is designed by Quayle et al. to screen 

the Bluetooth-based travel time outlier samples (Quayle et al. 2010). Li and Souleyrette 

propose a Kalman-filter framework to estimate the time-varying travel time with collected 

Bluetooth travel time samples (Li and Souleyrette 2016). In category, these techniques 



 

 

 

 

 

  

         

       

          

        

          

        

      

      

            

           

           

          

             

           

        

        

           

            

             

       

         

            

  

fall into the category of “passive sensing” technique. Road-side capturing devices are 

typically needed at different locations for travel time estimations. 

After entering the era of mobile computing, most vehicles become "probe vehicles" via 

drivers’ smartphone apps and on-board units. These vehicles share their information 

regularly. The information can be collected through drivers’ smartphones, in-vehicle 

global positioning system (GPS) receivers, etc. Most new vehicles today are equipped 

with in-vehicle GPS receivers for location services (e.g., GM’s OnStar service). Such 

services require vehicles constantly share their locations and therefore the collected 

location data are essentially crowdsourced, and the non-personal part of such data sets 

is a novel traffic data set with massive sample sizes and broad coverages. The 

commercial probe vehicle data are typically provided in two forms: (I) dynamic link travel 

times/ link travel speeds according to aggregated GPS trajectories; (II) individual vehicle 

trips containing all the trip waypoints at small time intervals (3 s~15 s). Both types of GPS 

probe data are currently used in congestion management. For example, Gong and Fan 

design a framework to identify freeway bottlenecks using the large-scale link travel time 

aggregated from vehicle GPS trajectories (Gong and Fan 2018). They combine both 

probe data sets and traffic management center data to identify bottlenecks. Zhao et al. 

use commercial vehicle GPS trajectories with a time interval of 15 s or longer to evaluate 

traffic progression in Washington (Zhao et al. 2013). Waddell et al. investigate to estimate 

traffic signal performance along arterials using the vehicle GPS trajectories and 

automated traffic signal performance metrics (ATSPM) (Waddell et al. 2020; Waddell et 

al. 2020). Deng et al. use GPS trajectories to model intersections (Deng et al. 2018). 



 

 

 

 

 

  

        
            

              

             

           

            

            

            

           

   

        
            

             

         

       

         

               

             

              

           

              

           

            

3. The framework for processing the raw ICV data 
A big challenge of using the ICV data for transportation management is how to reduce 

the ICV data size to a manageable level for specific purposes. Due to the rich information 

and high resolution, even a few weeks of ICV data set will be hundreds of gigabytes or 

even terabytes of text files. They are beyond the capability of traditional data processing 

tools. To overcome these challenges, we propose a scalable data processing framework 

and filter irrelevant information from the raw ICV data and screen out the data irrelevant 

with the scope of studies. Also, we develop efficient map-matching algorithms to map 

vehicle GPS traces onto road links. Fig. 1 demonstrate the proposed ICV data processing 

framework. 

3. 1 Step 1: data reduction for the scope of interest 
The first core process in this framework is to reduce the data size and screen out 

irrelevant data set. The ICV data are often delivered in vehicle traces covering the entire 

area while the scope of congestion management only includes much smaller areas along 

the highways whose shapes are likely irregular. Checking whether geolocation points is 

within an irregular polygon at large scale is computing-intensive. To address this issue, 

we adopt an efficient approach proposed by Li and Li (Li and Li 2010). The data-reduction 

method due to Li and Li is to first convert vector GIS maps into raster maps and use each 

pixel’s value to represent a link ID. In light of this idea, we first rasterize a broader 

bounding rectangle on GIS map. We only focus on the waypoints that are within the 

bounding rectangle. We then set all the pixels within the polygon of interest as one value 

that is different from those pixels out of polygon. Each waypoint within the bounding 

rectangle will be assigned the corresponding pixel value. At last, all waypoints are 



 

 

 

 

 

  

 

grouped  and  filtered  according  to  their assigned  values.  More  details are  provided  as 

follows:   

The  congestion  management  is typically carried  out  for a  city  or a  region  within  which  the  

unit  distances of  longitude  are  viewed  as constant  (i.e.,  the  city  or region  can  be  viewed  

as a  flat  plane).  Therefore,  we  can  safely map  the  vehicle  GPS waypoints from the  

WGS84  coordinate  system (latitude-longitude  coordinates) into  the  local  coordinates in  a  

customized  rectangular coordinate  system.  

BR

Figure  1  illustration  of  data  reduction  with  the  OpenCV library  

As shown  in  Fig.1,  the  broader bounding  rectangle,  denoted  as 𝐵𝑅,  is first  defined  to  cover 

all  the  road  segments of  interest.  The  irregular area  of  interest  is denoted  as 𝐴.  The  

bottom-left  corner of  𝐵𝑅  is the  origin  with  coordinates (0,0) in  the  local  rectangle  

coordinate  system,  denoted  as 𝑃1.  From an  on-line  map  engine  (e.g.,  Google  Map),  we  

can  then  find  𝑃′
1𝑠  latitude-longitude  coordinates,  denoted  as (𝑙𝑜𝑛𝑚, 𝑙𝑎𝑡𝑚).  Secondly,  the  

latitude-longitude  coordinates of  the  top-right  corner,  denoted  as 𝑃2,  is identified  as  

(𝑙𝑜𝑛𝑀, 𝑙𝑎𝑡𝑀).  Thirdly,  the  rectangular 𝐵𝑅  is further divided  into  𝑥𝑀 × 𝑦𝑀  smaller cells.  Using  

the  cells as the  units,  then  the  local  coordinates for 𝑃1  and  𝑃2  are(0,0)  and (𝑥𝑀, 𝑦𝑀), 𝑥𝑀 ∈ 



 

 

 

 

 

  

          

      

         

     

              

 

         

         

         

              

               

           

           

         

     

           

               

            

            

               

           

         

𝑁+, 𝑦𝑀 ∈ 𝑁+ . A larger 𝑥𝑀 or 𝑦𝑀 means a small cell size (i.e., higher resolution) along the 

x or y directions. The above conversion function from latitude-longitude 

coordinates(𝑙𝑜𝑛, 𝑙𝑎𝑡) to local coordinates (𝑥, 𝑦) in 𝐵𝑅 can be formulated as: 

𝑥𝑀×(𝑙𝑜𝑛−𝑙𝑜𝑛𝑚) 𝑦𝑀×(𝑙𝑎𝑡−𝑙𝑎𝑡𝑚)
(𝑥, 𝑦) = 𝐹(𝑙𝑜𝑛, 𝑙𝑎𝑡) = ( , ) (1) 

𝑙𝑜𝑛𝑀−𝑙𝑜𝑛𝑚 𝑙𝑎𝑡𝑀−𝑙𝑎𝑡𝑚 

For each latitude-longitude point, (𝑙𝑜𝑛, 𝑙𝑎𝑡), (1) will convert it into a local point, (𝑥, 𝑦), in 

𝐵𝑅. 

𝑣 With (1), the coordinates of polygon 𝐴’ vertices, denoted as {(𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖
𝑣), 𝑖 ∈ {0,1,2, … }} 

can be converted into the local rectangle coordinate system: 

𝑣 𝑣)(𝑥̂𝑖, 𝑦̂𝑖) = 𝐹(𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 (2) 

To identify if a waypoint falls into 𝐴, the waypoint must be compared with all vertices of 

polygon A. This process, if carried out in sequence, will be time-consuming but can greatly 

speed up with advanced computing tools. In this context, since the proposed data-

reduction process is similar with processing an image comprised of pixels, we adapt a 

computer-vision library, referred to as the OpenCV, to perform this process. We 

formulated this problem as a image processing problem. 

We constructed a binary matrix, 𝑴, with dimensions of 𝑥𝑀 × 𝑦𝑀. Each element represents 

a cell defined above in analogy of “image pixels” of 𝐵𝑅 and 𝐴, and can be indexed by the 

row number 𝑖 and column number 𝑗. Each element in 𝑴 is initialized as “0” and those 

elements within 𝐴 is then adjusted to “1”. A function, 𝑀: ℝ × ℝ → {0,1}, can be constructed 

from the matrix 𝑴. For a point, (𝑥, 𝑦), within the 𝐵𝑅, the value of 𝑀(𝑥, 𝑦) is the value of 

the element in matrix 𝑴 indexed by row ⌊𝑥 + 0.5⌋ and column ⌊𝑦 + 0.5⌋. For the points 

outside of 𝐵𝑅, the value is 0. This is described by Equation (3). 



 

 

 

 

 

  

     
(𝑴⌊𝑥+0.5⌋, 𝑴⌊𝑦+0.5⌋), 𝑥 ∈ [0, 𝑥𝑀), 𝑦 ∈ [0, 𝑦𝑀)

𝑀(𝑥, 𝑦) = { (3) 
0, 𝑜. 𝑤. 

A latitude-longitude  waypoint  (𝑙𝑜𝑛, 𝑙𝑎𝑡)  will  first  be  converted  into  the  local  coordinates  

(𝑥, 𝑦)  in 𝐵𝑅.  We  used  the  OpenCV library to  mark down  the  corresponding  latitude-

longitude  waypoints that  are  within  𝐴,  i.e.,  {(𝑙𝑜𝑛, 𝑙𝑎𝑡)|𝑀(𝐹(𝑙𝑜𝑛, 𝑙𝑎𝑡)) = 1,    ∀(𝑙𝑜𝑛, 𝑙𝑎𝑡)}.The  

above  data  reduction  process inspects each  waypoint  independently,  allowing  for 

parallelization.  The  GPS waypoints in  this study are  also  delivered  in  multiple  text  files for  

each  hour.   

3.2 Map  matching  of  vehicle GPS  waypoints to  time-dependent  road  link 

sequences  

Traffic congestion  is typically evaluated  based  on  road  segments.  Therefore,  it  is  critical  

to  map  the  vehicle  trajectories onto  road  links and  convert  vehicle  trips to  a  time-

dependent  link sequences for quantitative  analysis.  For the  real-world  problems with  the  

ICV data  sets,  the  map-matching  task often  requires matching  millions of  vehicle  GPS 

waypoints to  tens of  thousands of  road  links.  As  such,  the  map-matching  algorithm must  

be  designed  in  such  a  way that  it  can  significantly reduce  the  matching  space  and  can  

parallelize  the  tasks into  multiple  CPU  cores or computer clusters.   To  meet  these  goals,  

we  design  the  map-matching  algorithm as follows.   

Step  1:  Grid  the  road  network.  

The  purpose  of  gridding  the  road  network into  cells is to  exclude  those  road  links obviously  

irrelevant  to  a  GPS waypoint.  Figure  2-a  demonstrates the  grid  road  network in  the  Dallas-

Fort-Worth  region.  If  a  waypoint  falls into  Grid  X,  the  algorithm does not  need  to  compare  

those  links in  Grid  Y.  
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Figure 2 Gridding Road networks and map matching 

Step 2: Identify the list of crossing grids for road links. 

Regional highway networks are represented by nodes and links. After gridding the road 

network, certain long links (𝑖, 𝑗), represented by two end nodes 𝑖, 𝑗, may cross more 

intermediate grids than just two grids. To ensure all crossing grids of a long link will be 

recorded, we extend the scope of long links. As illustrated in Fig. 2-b, Link (𝑖, 𝑗) crosses 

three grids (yellow and red). We extend the list of crossing grids for (𝑖, 𝑗) to all the grids 

within the shadow. This operation will guarantee any waypoint can always match its link 

even if the road network is sparse. The shadowed area in Fig. 2-b is an extended 

rectangle on the gridded road network to cover multiple grids (red, yellow and green). The 

rectangle uses two yellow grids as diagonal corners. 

Step 3 Match GPS waypoints to links. 

While matching a waypoint (e.g., Grid X) to the road links, only those road links passing 

Grid X will be selected for matching and the link in the same grid with the shortest 

conjugate distance from the waypoint will be identified as matched link. (See Fig. 1) 



 

 

 

 

 

  

             

          

               

            

      

               

          

         

           

          

        

               

            

         

        

         

   

         

         

         

         

            

          

After the map matching, each vehicle trip can be converted into a series of dynamic link 

sequence comprised of a link list and a time list. For instance, “(𝑙1, 𝑙2, … , 𝑙𝑛) + (𝑡1, 𝑡2, . . , 𝑡𝑛)” 

represents that a vehicle enters link 𝑙1 at 𝑡1, leaves 𝑙1 (i.e., enter 𝑙2) at 𝑡2 , leaves 𝑙2 

(enters 𝑙3) at 𝑡3 and so on. At this time, it is ready to analyze the link traffic performance 

based on the converted ICV data sets. 

Remarks: Although Step 2 will ensure a waypoint will match the correct link, it also 

introduces unnecessary matching efforts. For instance, in Fig. 2, a waypoint in those 

green grids will have to calculate its conjugate distance to irrelevant link (𝑖, 𝑗). 

Nonetheless, the long links crossing multiple grids is rare in the practical road networks. 

Therefore, Step 2 will not significantly increase the computing efforts. 

Framework’s scalability: Gridding the road network will dramatically reduce the number 

of links to be matched for each waypoint. Step 1 and Step 2 will jointly guarantee that the 

map-matching results will not deteriorate if the grid size is further reduced. Since the map 

matching for one waypoint is independent of other waypoints, the map-matching process 

for multiple waypoints can be parallelized on multiple CPU cores or computer clusters. 

Therefore, the proposed map-matching method is scalable, and it is suitable for large-

scale problems. 

Mismatching issue: A small portion of waypoints may be equally away from two links. For 

instance, while a vehicle is passing an overpass on freeways, its waypoints may be 

equally away from the freeway link and the overpass link. To avoid mismatching, it is 

necessary to examine the predecessors and successors of this waypoint within the same 

trip to ensure the correct links. Comparing the vehicle’s heading (direction) with the road 

direction can also help remove the mismatching issue. 



 

 

 

 

 

  

    

 
        

         

            

         

           

           

       

       

 
         

            

        

            

              

           

          

            

          

               

       

           

         

4. ICV-data-based performance metrics in time-space 

diagram 
The time-space diagram (TSD) is a popular tool to reveal time-dependent traffic 

performance on roads. Since the ICV data ubiquitously cover all the locations with 

relatively large sample size. We can divide a road link into smaller segments to reveal the 

time-dependent traffic performance according to the ICVs’ waypoints at different locations 

over time. The new performance metrics are designed according to the features of ICV 

data sets: time-dependent link speed map integrated with slow vehicle movements; 

degree of speed harmonization (DSH). 

4.1 Time-dependent link speed map integrated with slow vehicle 

movements 
Time-dependent travel speed: The time-dependent segment speed is calculated as the 

average speed of waypoints reported within each segment and time period. 

𝑖 𝑣̅𝑡,𝑙 = ∑𝑖=1,..,𝑛 𝑣𝑡,𝑙 (5) 

𝑖 Where: 𝑣̅𝑡,𝑙 is the average travel time on segment 𝑙 during time-of-day period 𝑡; 𝑣𝑡,𝑙(𝑖 = 

1,2, … 𝑛) is the reported speed in a waypoint within the segment and time-of-day period. 

Vehicle slow movements and queue length: the slow movements are identified when a 

vehicle’s speed has reduced below a threshold. When an internet-connected vehicle joins 

queue end at a bottleneck, its speed will significantly reduce. Therefore, we can estimate 

the propagation of queue lengths at bottlenecks according to when an internet-connected 

vehicle begins to report slow movements. As illustrated in Fig. 3, the start of a stable slow 

movement represents the instantaneous queue end at bottlenecks. 

The proposed performance metric is a combination of travel speed and vehicle slow 

movements and it will be demonstrated in Case Study I. 
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Figure  3  Identifying  queue  end  with  vehicle  slow  movements at  bottlenecks  

4.2  Degree  of speed  harmonization  (DSH) on  road  segments  

While  the  travel  speed  is a  straightforward  indicator of  traffic mobility,  it  also  averages out  

the  heterogeneity and  fluctuation  of  individual  vehicles.  As shown  in  the  Fig.  4,  vehicle  1  

accelerates and  decelerates multiple  times between  location  𝑖  and  location  𝑖  whereas  

vehicle  2  only accelerates once.  If  we  use  the  average  speed  to  represent  the  two  

vehicles’  maneuvers,  then  the  vehicle  1’s stop-and-go  pattern  will  be  missing.   

Veh 1 speed profile

Veh 2 speed profile
Average speed
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Figure  4  Speed  files of  two  heterogeneous vehicles with  the  same  average  link speed  



 

 

 

 

 

  

      

          

     

             

              

       

   

            

            

           

          

         

        

          

    
       

      

             

           

           

           

              

Since vehicles’ stop-and-go characteristics directly reflects both traffic safety hazard and 

congestion, we propose the following performance metrics to reflect the speed 

harmonization on road segments. 

Denote the collection of speeds of a trip 𝑝 on a road link as {𝑣𝑝
𝑖 }, 𝑖 = 1,2, ….. then non-

𝑖 } =negative speed change value and the average speed change of 𝑝 are defined as {𝑑𝑝 

(∑𝑖=1,2,…𝑛 𝑑𝑝
𝑖 )

{|(𝑣𝑝
𝑖 − 𝑣𝑝

𝑖−1)|}, 𝑖 = 2, 3, … and 𝑑̅𝑝 = , respectively. The DSH on link 𝑙 is 
𝑛 

calculated as follows: 

(∑𝑝=1,2,…𝑚 𝑑̅𝑝)
𝐷𝑆𝐻𝑙 = for ∀ 𝑙 (6) 

𝑚 

(6) shows the DSH of all vehicles on 𝑙 during the study period. It is similar with the 

definition of “coefficient of variation” in statistics indicating the normalized deviation of a 

vehicle’s reported speeds. DSH is related with traffic safety and vehicle emissions. The 

larger the dimensionless DSH of a cell is, the more likely vehicles frequently accelerate 

and decelerate, implying traffic safety hazard and vehicle emission issue. 

5. Case study I: Using the ICV data to identify queue 

propagation at freeway bottlenecks 
The queue length at freeway bottlenecks is traditionally estimated according to traffic 

counts at upstream and downstream locations. For example, Lawson proposes an 

approach to estimate the queue length based on the vehicle cumulative counts, also 

known as A-D curves (Lawson et al. 1997); Newell proposes a so called three-detector 

method to estimate the queue length at freeway bottlenecks (Newell 1993). However, 

these methods of queue length estimation are sensitive to the selected parameters (e.g., 

vehicle speed while moving in the queue). Using the ICV data, we can directly measure 



 

 

 

 

 

  

          

            

       

        

           

        

              

             

                

           

              

              

        

               

       

             

           

            

        

          

           

the queue length and propagation at freeway bottlenecks. Through synthesizing multiple 

days of ICV data, we use the performance metrics proposed in Section 4 to identify the 

spatio-temporal characteristics of queue lengths at bottlenecks. 

The selected freeway segment on I-20 interstate highway is one of major corridors for 

travelers within City of Arlington, Texas. There are also six ramps along the I-20 in 

Arlington, potentially causing vehicles to slow down. Following the framework proposed 

in Section 3, we first process the raw ICV data and only reserve relevant vehicle trips. A 

related vehicle trip is identified if at least one of its waypoints is located within the study 

scope and has a correct heading. In addition, a vehicle trip is broken into two or more if a 

time interval between two consecutive way points is longer than 2 minutes. In that case, 

it means the same vehicle may likely have taken off the mainline and then taken on the 

ramp again. Therefore, the same vehicle trip should be viewed as two separate trips. In 

the preliminary data screening, totally 36,345 vehicle trips were retrieved from June 1st, 

2020 to June 7th, 2020. Using the processed vehicle trips, we then construct a 24-hour 

time-space diagram with multiple days of vehicle trips to identify spatio-temporal 

bottlenecks. The speed limit on I-20 in Arlington is 70 miles per hour (MPH). If a waypoint 

speed is lower than 40 MPH, a local empirical threshold, then the vehicle’s waypoint is 

labelled as a “slow movement”, suggesting that this vehicle is in a moving queue. Since 

the ICV waypoints cover the entire freeway segment, we further divide the freeway into 

several subsegments with 0.5-mile length to inspect the traffic performance metrics at 

each subsegments. Furthermore, we divide one day into 24 hours. 
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Figure  5  Time-space  diagram of  dynamic travel  speed  integrated  with  slow  vehicle  
movements  

 
Fig.  5  reveals high  correlation  between  travel  speed  and  slow  trajectories.  For instance,  

we  can  identify low-speed  cells,  such  as those  in  Areas I,  II,  III  and  IV.  We  can  also  identify  

the  queue  propagation  in  those  areas,  too.  The  colored  cells and  slow  trajectories jointly  

visualize  the  spatio-temporal  characteristics of  freeway bottlenecks.  In  particular the  EB  

queue  length  in  Area  III,  developed  at  a  ramp,  seems to  have  lasted  a  few  hours and  the  

queue  propagated  back to  upstream ramps.  The  queue  length  reached  the  maximal  

between  8  PM and  9  PM and  then  disappeared  after 11:  30  PM.  Note  that  the  ICV data  

for this case  study were  collected  during  the  lockdown  period  of  Texas.  Therefore,  there  

were  no  obvious morning  and  evening  peak hours.  The  cause  for the  bottlenecks was the  

road  construction  and  work zone  management.  The  local  agencies decided  to  speed  up  

road  construction  projects during  the  pandemic because  the  traffic volumes dramatically  

decreased.   
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Figure  6  Time-space  characteristics of  degree  of  speed  harmonization  (DSH)  

Fig.  6  reveals the  DSH  values in  each  cell.  A three-color code  is used  to  represent  the  

DSH  in  each  cell.  We  can  tell  that  the  DSH  has low  correlation  with  travel  speed.  

Compared  with  the  slow  trajectories.  It  seems that  vehicles DSH  reduces after they slow  

down  and  join  the  queue.  This makes sense  because  vehicles have  less flexibility of  

speed  changes due  to  the  close  spaces with  other vehicles.   

6. Case Study II: Using the ICV data and traffic control data to 

identify arterial congestion 
Intersections on arterials are natural bottlenecks on arterials. Compared with freeways, 

the agencies typically collect various types of data via fixed-spot infrastructure detectors 

and traffic signal control events. Data-driven traffic control performance metrics is one of 

focuses of the “Every Day Counts Initiatives” program overseen by Federal Highway 

Administration (Wagner 2014). More recently, researchers begin to explore integrating 

vehicle trajectories with infrastructure traffic data to create novel traffic performance 

metrics. The most common method to reveal the arterial traffic bottleneck is the time-



 

 

 

 

 

  

          

        

           

       

  

 

space diagram (TSD). The TSD reveals the performance of traffic signal control across 

multiple intersections and the performance metrics include green bandwidth, maximum 

queue length, etc. Fig. 7 is an arterial time-space diagram based on traffic signal events 

(signal control records at each intersection) and vehicle trajectories (curves between 

intersections). 

INT      Ave travel time: 62.8 s; Slowmo% (<5 mph): 8.1%

INT      Ave travel time:  57.3 s; Slowmo% (<5 mph): 22.1%

INT      Ave travel time: 55.5 s; Slowmo% (<5 mph): 33.3%

INT      Ave travel time:  33.6 s; Slowmo% (<5 mph): 10.1%

INT      Ave travel time: 34.5 s; Slowmo% (<5 mph): 20.1%

INT      Ave travel time: 26.2 s; Slowmo% (<5 mph): 7.0%

INT      Ave travel time: 27.14 s; Slowmo% (<5 mph): 38.5%

INT      Ave travel time:  42.5 s; Slowmo% (<5 mph): 28.4%

1

4

5

3

2

Figure  7  Arterial  time-space  diagram and  mobile-sensor-based  performance  metrics  

The  high-resolution  traffic signal  events are  footprints of  traffic control  operations.  

Whenever a  traffic controller changes its status (e.g.,  capture  an  approaching  vehicle,  a  

green  phase  start  or ending,  etc.),  this control  event  will  be  timestamped  and  archived.  

We  can  use  the  control  events to  construct  the  TSD  using  the  control  events.  Constructing  

TSDs ideally needs both  high-resolution  traffic signal  event  data  and  synchronous vehicle  

trajectories with  sufficient  penetration  rate,  the  latter of  which  are  not  available  until  

recently.  In  this case  study,  we  explore  to  combine  the  ICV data  with  the  high-resolution  

traffic control  log  data  and  design  new  arterial  traffic performance  metrics based  on  ICV 



 

 

 

 

 

  

           

      

        

       

           

          

          

      

          

          

              

             

       

           

        

           

          

             

           

             

       

        

          

data. The traditional TSD is solely based on infrastructure traffic data sets. Therefore, 

bias is likely introduced to reveal congestion under complex traffic conditions with queue 

spillbacks. The traditional TSD also assumes constant moving speeds between 

intersections unless vehicles join queues. This assumption may be also questionable 

because vehicles may slow down to enter a drive way, slowing down the following 

vehicles. Or vehicles may slow down and move in a two-way left-turn lane. These 

maneuvers cannot be captured by the infrastructure traffic sensors and so the TSD may 

convoy misleading information about arterial traffic performance. 

The selected arterial is five consecutive intersections of the Cooper Street in City of 

Arlington, Texas. All the five intersections can archive high-resolution traffic signal events 

data. The speed limit on the Cooper Street is 40 MPH. Since the mainline green duration 

varies from cycle to cycle under actuated traffic signal control, it will be more accurate if 

the high-resolution traffic signal events and ICV waypoints are synchronized. By contrast, 

the freeway congestion can be evaluated solely with the ICV dataset. In the North 

America, most arterials are controlled by actuated traffic signal systems. A common 

mechanism in the actuated traffic signal system is “early return to green”, returning any 

unused green time allocated for minor approaches back to the mainline. As a result, the 

green duration on the arterial mainline may vary from cycle to cycle. In order to evaluate 

the high-fidelity delays, queue lengths, travel speed, etc. given, it is necessary to avoid 

averaging out the cycle-to-cycle differences. To meet these goals, we design an arterial 

time-space diagram based on the ICV trajectories and traffic signal events across multiple 

intersections. Other than the common travel speed or arrivals-on-green percentage 

described in other literature, we design a new performance metrics between two 



 

 

 

 

 

  

          

          

     

        

            

              

       

             

             

           

           

             

           

          

           

          

          

         

           

           

          

            

        

consecutive intersections: the percentage of slow movements of vehicle trajectories. 

Using all the waypoints between two intersections during the study period, the slow 

movement percentage is calculated as: 

′ ∑𝑖=1,..,𝑚 𝑣𝑖 𝑝𝑠 = ( ) (7) 
∑ 𝑣𝑖 𝑖=1,..,𝑛 

′ Where: 𝑝𝑠 is the slow movement percentage; 𝑣𝑖 is the waypoint speed which is lower than 

a threshold (e.g., 5 miles per hour); 𝑣𝑖 is the waypoint speeds; 𝑚: the number of slow 

speeds; 𝑛: the number of total waypoints. 

Compared with the link travel speed, an advantage of the slow movement percentage is 

that it can reflect the vehicles’ actual queuing time between intersections. The link delay 

is defined as the actual travel time minus free-flow travel time. In practice, vehicles’ 

moving speeds are seen different from the speed limit. Therefore, the averaged link delay 

time may misestimate the actual queuing time. In Fig. 8-A, 𝑡1 is the reported link delay 

while the vehicle’s actual delay time is 𝑡2 + 𝑡3 and it is greater than 𝑡1 because the 

vehicle’s desired speed is faster than the free-flow speed. Fig 8-B demonstrate the other 

possibility, 𝑡2 + 𝑡3 < 𝑡1 because the vehicle’s moving speed is lower than the speed limit. 

The driving experience, energy consumption and emission are more sensitive to low-

speed maneuvers. Identifying the actual queuing time accurately is important to evaluate 

the traffic signal performance and vehicle energy consumptions on arterials. To address 

this issue, the slow movement percentage is designed to capture the real delay time 

between intersections, which is critical to estimate the control delay given a traffic signal 

timing. The aggregated average travel time and slow movement percentages (speed<5 

MPH) between intersections are shown in Fig. 7, which is generated according to the ICV 

data (trajectories in the TSD) and high-resolution traffic signal events (mainline traffic 



 

 

 

 

 

  

           

          

 

   
            

         

        

              

            

            

        

           

          

        

         

          

          

control status and green band) from 12 PM to 1 PM on Dec-29-2020. The actual delay 

time is calculated as average travel time multiplied by slow movement percentage. 

INT 2

INT 1

Free-flow Speed:

Measured speed:

Actual speed:

t1

t3

t2

A
t1

t3t2

B

INT 1

Figure  8  Using  slow  movement  percentages between  intersections to  calculate  vehicles’  

actual  delay time  (when  speed  < 5  MPH)  

7. Conclusion 
In this paper, we present our efforts in exploring and exploiting the potential internet-

connected vehicle (ICV) data set. The ICV data are passively crowdsourced from the on-

board positioning and communication modules in recently manufactured vehicles. The 

raw data from the distributor, the Wejo Data Service Inc. are well organized but have 

super big volumes. Therefore, we first design efficient algorithms to screen the data set 

and match the vehicle waypoints to the maps. We further design two new traffic 

performance metrics and their visualizations in the time-space diagrams based on the 

characteristics of ICV data sets. One case study is conducted on the interstate I-20 in 

Arlington, Texas and the other case study is conducted on the Cooper Street in Arlington, 

Texas in conjunction with high-resolution traffic control events from the infrastructure. The 

Cooper Street is a major arterial in Arlington. The features of the proposed traffic 

performance metrics include that: (I) we can identify the queue propagation at freeway 

bottlenecks, based on where and when most internet-connected vehicles began to 



 

 

 

 

 

  

            

         

          

           

           

           

      

  
       

        

       

           

       

           

         

    

 

  

considerably slow down and joined the queue; (II) we can identify a vehicle actual queuing 

time between intersections based on its slow movement percentage. The new 

performance metric does not need to assume a non-delay travel time. More accurate 

estimation of vehicles’ queuing time is critical for traffic signal timing design and the 

estimation of vehicles’ energy consumption. Based on the above findings, we conclude 

that the ICV data set has a huge potential in enhancing traffic congestion management 

planning both on freeways and arterials. 
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1. INTRODUCTION 
With recent advances in the pilot testing and deployment of Connected Vehicle (CV) 

technologies (1; 2), there is a massive surge in the quantity and quality of data that is 

becoming available for aggressive feedback into real-time operations of transportation 

management systems, especially signal systems. Among the wide swath of applications 

proposed as CV technology, advancement of Emergency Vehicle Preemption (EVP) is 

one that is ripe for implementation, as it targets a specific set of vehicles and does not 

require a substantial penetration of On-Board Units in the general traffic. 

EVP is not a new concept and has been used in the past with varying levels of 

reported success (3-5). The benefits of EVP have been somewhat restricted in the past, 

especially in congested roadway conditions, because of the line-of-sight requirement 

between the EV transmitter beacon and the preemption request receiver at the traffic 

signals. However, there have been recent technological developments in this space with 

the integration of GPS device based triggering mechanisms for preemption (6-9). CV 

technology provides a seamless means to integrate live vehicle position and multiple 

intersections’ signal status data-streams, enabling enhanced strategies for optimal EVP 

performance. With Emergency Vehicle (EV)’s on board CV equipment and CV roadside 

units (RSUs) connected to the signal controllers, the line-of-sight restriction is no longer 

required. This opens up the possibility of creating a free-flow path through the signalized 

intersections for the EV. By anticipating the arrival of the EV, based on its position as 

recorded by CV messages received at other RSUs in the system, vehicles on the 

approach of interest may be cleared before the EV arrives. While such a methodology 

has been proposed before, and has seen limited implementation using GPS and cellular-



 

 

 

 

 

  

        

          

   

     

       

            

        

            

           

        

        

         

         

      

 

   

 
         

         

             

           

            

               

         

phone based technologies, there is not sufficient literature on clear before-after 

evaluations of a distributed predictive EVP implementation. Research is also limited on 

the methodology of implementation. 

This paper develops a methodology for evaluating different EVP strategies made 

available through CV technology. Additionally, while EVP reduces EV travel-time delays, 

it may negatively impact the flow of the general vehicles at the given location or corridor. 

This paper develops a simulation model for a roadway corridor in Georgia and evaluates 

the impact of EVP on both EV performance and general traffic. While the EVP strategy 

that minimizes emergence vehicle travel time should be selected it is possible the 

strategies with similar EV performance may have different impacts on the general traffic. 

By way of example, this paper studies the impact of two different strategies for returning 

the signal operations to normal operation after an EVP actuation and evaluates the 

recovery process by measuring the effect on the travel-times of the vehicles on the 

mainline as well as the vehicles on the cross-streets. 

2. BACKGROUND RESEARCH 

This section provides a brief introduction to EVP and provides a summary of previous 

studies relevant to this research. Per MUTCD 2009 Edition (10), traffic signal preemption 

is defined as the change in operation of a traffic signal from normal mode to a special 

control mode. The primary objective is to give a certain class of vehicle hindrance-free 

passage by providing a green indication for the route of the said class of vehicle. 

Preemptive control can be given to trains, boats, EVs, and light rail transit (11). EVP is 

the phenomenon of preemptive operation intended for EVs, such as firetrucks, 



 

 

 

 

 

  

            

            

            

           

          

  

             

           

           

             

             

      

           

    

          

          

            

           

          

          

           

           

             

ambulances, etc. with an aim to give right-of-way to the vehicle, minimizing the delay in 

reaching the incident location (12). The preemption triggering message can be conveyed 

to the signal cabinet through a multitude of methods; the driver could externally relay the 

message (by use of strobe, siren, pushing buttons, etc.) or the infrastructure could be 

equipped to sense EVs through pavement loops, radio transmission, or other vehicle to 

infrastructure (V2I) technologies (11). 

The primary purpose of extending green time in EVP is to reduce the travel time 

of the EV and ensure a safe and clear pathway for the vehicle (13). The preemption 

process involves two transition phases, one going into the preemption state, and the other 

coming out of preemption to restore normal signal operations. The Traffic Signal Timing 

Manual (11) states that, both the transitions, the yellow and all-red intervals shall not be 

shortened or omitted. Other guidance for transitions is include for pedestrian timing, 

returning to a red indication, allowable indication transitions, and accounting for multiple 

preemption requests. 

Several studies on evaluation of EVP considered the delays experienced by the 

opposing approaches along with the EV travel time reduction. Nelson and Bullock (2000) 

focuses on investigating the effect of preemption calls on traffic congestion (14). The case 

study was performed in a simulated environment by linking a model built in TSIS/CORSIM 

to the signal controllers using Hardware in the Loop Simulation (HILS) technology. SR-

26 in Lafayette, Indiana was simulated as a network having seven preemption paths with 

1-3 preemption calls made in a predetermined time duration. For the phase transition, 

three algorithms smooth, add and dwell were studied and it was inferred that the smooth 

transition algorithm worked best in most cases. While studying the effect of EVs, the study 



 

 

 

 

 

  

             

                

           

           

          

        

            

            

          

             

            

              

     

     

               

           

          

        

          

        

        

          

       

found that for both arterials and side streets, having a single preemption call in the 

simulation period had little to no effect on the overall travel time and delay. Ten, Hualiang, 

et al. (2003) studied the amount of disruption of coordination signals using microscopic 

simulation models based on multiple locations of New York City. For this study, the EVP 

related disruption took a maximum of four signal cycles to recover (15). Xiaolin and Khan 

(2012) used MATLAB simulation to study the effectiveness of two control strategies for 

EVP to reduce response time and effect of the EVs on general traffic. The study 

suggested the use of a predefined “notification time period” for the network to design an 

algorithm to maximize the improvement for EVs while minimizing the adverse effect of 

preemption on side streets. There were several other studies (16; 17) that tried to solve 

this delay tradeoff. Homaei et al. (2015) used fuzzy logic to select the preemption phase 

and extend the green time based on demand and queue length using available V2V and 

V2I technologies (18). Other studies approached this problem from the network path 

perspective, as a route planning problem (19-21). 

The existing literature shows that it is imperative that a study of the impact of EVP 

accounts for travels time both on the route of the EV as well as the routes that are 

interrupted. There have been previous studies on the evaluation of innovative algorithms 

to optimize EVP performance and traffic disruption. However, these studies typically 

studied preemption at a single intersection or a few non-contiguous intersections in a 

small network. This paper studies the EVP problem on a medium sized network (with 25 

intersections) using preemption on 8 contiguous intersections to specifically focus on the 

problem of disruption of signal coordination. The study also uses additional data available 

from a limited deployment of CV technology (with on-board-units on EVs and road-side-



 

 

 

 

 

  

         

     

 

  

 
        

        

         

         

        

         

          

     

 

      
 

            

           

            

            

            

           

        

          

     

 

units at intersections) to feed a “Dynamic Preemption” logic to optimize the movement of 

the EV through the intersections. 

3. MODEL DESCRIPTION 

This paper uses a microscopic simulation model of a corridor to evaluate different EVP 

strategies and their effectiveness in providing the shortest travel-time for the EV while 

keeping the delays experienced by the remaining traffic at a minimum. A simulation 

approach was chosen in favor of a before-after study given the advantages of rapid 

evaluation of multiple scenarios facilitated by a simulation environment. A microsimulation 

model build on PTV’s VISSIM 2021® (22) was used for this study. Replicate runs are 

made efficiently using Python 3.7 (23)’s scripts to drive VISSIM® using its Component 

Object Model (COM) module. 

4. Study Site and Data Description 

The simulation model is built for a 6.2 mile stretch along the Peachtree Industrial 

Boulevard (PIB) corridor from Holcomb Bridge Rd at the south-west end to Pleasant Hill 

Rd on the north-east end, in Norcross, Georgia. The model includes 25 intersections on 

and around the major road. The layout of the network in PTV VISSIM® and the network 

extents in satellite view are represented in Figure 8 (a) & (b). For consistency, PIB is 

referred to as a North/South corridor throughout the length of the corridor. The cross-

street approaches are defined as Eastbound (EB) and Westbound (WB). For this model, 

the system entities, consisting of the network geometry and the signal-heads, were built 

based on satellite imagery from OpenStreetMaps™ (24). 



 

 

 

 

 

  

 
                                                                                

 

   
      

       

         

         

            

           

        

         

             

    

        

         

      

(a) (b) 

Figure  8  Case  Study  Network  of Peachtree  Industrial  Boulevard: (a) VISSIM®  
Simulation  Model,  (b)  Satellite  View  by  Google  Maps™  (25).  

5. Data Sources 
The study focused on investigating strategies for preemptions during the 5PM-6PM peak 

hour, typically the most congested period for this corridor. For any day specific information 

the inputs defaulted to using data from a “non-holiday” weekday, Tuesday, October 01, 

2019. Signal plan information was obtained directly from the field controllers, representing 

the active plans. A pre-COVID pandemic time period was chosen for the input data to 

ensure that the traffic and signal plans in the model represented typical traffic operations. 

VISSIM®’s Ring Barrier Controller (RBC) add-on module was used to simulate the signal 

controllers and preemption strategies. The obtained signal timing information was used 

as input to the RBC modules. The signals along the corridor are coordinated, with a 160 

second cycle. 

A single, comprehensive volume study was not available for this corridor. Thus, for 

the major and minor road approach volumes, data was assimilated from multiple sources 

including short-term historical turn-volume count data, counts obtained from post-



 

 

 

 

 

  

        

        

           

             

          

           

         

          

         

           

         

              

              

             

          

          

      

 

  
 

          

            

           

          

           

processing presence detector activations, recent traffic studies on the corridor, any 

available Automated Traffic Signal Performance Measures (ATSPM), etc. The signals on 

this corridor are also connected to a central server where the high-resolution signal phase 

and timing data as well as detection data is archived. The archived data had the vehicle 

on-off pulse information corresponding to the detectors. Typically, inductive loop 

detectors upstream of the stop-bar at intersections, in pulse mode, that fed the detection 

were present only for the major road approaches and only for the through lanes. The 

pulse data was post-processed to generate vehicle detection data for additional volume 

calibration. Finally, volume balancing and volume constraint computations based on 

signal cycle allowance and roadway geometry were used to generate estimates to fill 

gaps in available data to create the input volumes for the model 

To allow for a warm up period, the network is provided with 50% of the volume for 

the first 15 simulation minutes. Then the volume is raised to 100% for the next 75 

simulation minutes. Of the total 90 simulation minutes, data from the first 30 minutes are 

not used for collecting any simulation results to allow for a simulation saturation period. 

The last 60 minutes are used for collecting results to generate performance metrics 

corresponding to the 5PM to 6PM time period. 

6. MODEL CALIBRATION 

Model calibration by adjusting model parameters to maximizing the agreement of the 

model behavior to field observations (26) is an essential step to ensure that the model 

follows the travel behavior of the network that is being modeled. While fine-tuning the key 

parameters of the model to mimic real traffic in the network is necessary, it is not always 

possible to match the exact scenario of traffic vehicle-to-vehicle. Nor is that desirable as 



 

 

 

 

 

  

             

              

         

         

 

     

           

            

          

           

           

             

         

         

        

            

           

         

           

         

            

         

 

it that could lead to an overfitting problem that could affect the robustness, translatability, 

and generalization of the results. In this study, the calibration effort ensured that the model 

sufficiently reflected the field conditions. Subsequent validation tests with travel-time as 

the performance metric were performed to confirm the sufficiency of the calibration. 

6.1 Model Calibration I: Speed 

Free-flow speed is one the key-features defining the traffic flow of the network. For 

determining the free-flow speed on the major road, GPS data collected on the corridor 

was used. GPS data collection equipment was deployed on 17 Fire Station Vehicles, 

belonging to six different Fire stations around the corridor, including a mix of Ambulances, 

Fire Engines, and Fire Trucks. This dataset provided high resolution (2-second updates) 

probe vehicle data in and around the PIB network. The data was fused with the 

emergency response logs pertinent to these vehicles to separate trips where the vehicle 

was in emergency-response mode versus a return-trip mode. To avoid any unusual 

driving behavior, only data-points with the “Flashers OFF” mode were considered for the 

analysis. The trips in the return-trip mode were used to represent driving behavior under 

normal conditions and were used to determine the free-flow speed distribution. The 

overall speed-histogram is subjected to a deconvolution process to extract the data-points 

representing the free-flow speed in the network. The deconvolution process followed the 

methodology developed in a previous study by Anderson et al. (28). The distribution with 

the highest mean was chosen to represent the free-flow speed distribution; a Normal 

distribution with (Mean: 52 mph, SD: 8 mph). 



 

 

 

 

 

  

 
 

     
 

         

         

          

        

            

            

           

        

         

               

         

        

         

        

         

         

        

           

           

     

6.2 Model Calibration II: Headway 

The other parameter that is crucial for model calibration, pertinent to this analysis, is 

saturation headways (29). The count detectors on the major road approaches were used 

to measure headways by recording the gap between two “Entry” pulses for a detector. To 

avoid sparse traffic overly affecting the headway distribution the headway measurements 

were limited to observations less than 4 seconds. Similar to field detectors, 6 ft pulse 

detectors were placed in the VISSIM® model at the corresponding locations to the field 

detectors to obtain the corresponding headways in the model. To calibrate the VISSIM 

headways with those from the field detectors, the car-following parameters under 

VISSIM®’s Wiedemann 74 model were modified (27). Two key parameters of Wiedemann 

74 that dictate the headways are the additive part and the multiplicative part of the safety 

distance. The additive part dictates the average headway and the multiplicative part 

dictates the spread of the headway distribution. Four random seeds of VISSIM simulation 

results were compared to four weekdays of field detector data. For example, as shown in 

Figure 9 (b), approximately 1175 data-points per VISSIM simulation were compared to 

approximately 1400 data-points/day of field detector data at the NB approach of PIB at 

the Medlock Bridge Road intersection. The average headways (as depicted by the dotted 

vertical lines) for the field (labeled as MaxView) and VISSIM after calibration lie very close 

to each other, in the 2.3-2.4 seconds range. The Cumulative Distribution Function (CDF) 

lines, shown as the orange and blue monotonically increasing lines, are also similar. A 

two-sample Kolmogorov Smirnov (KS) test, a non-parametric statistical hypothesis test, 



 

 

 

 

 

  

          

            

 

  
                                                                                

 

   
 

           

           

        

         

performed on the two distributions concluded that the null hypothesis “the headway data 

sets come from the same distribution” cannot be rejected at a 90 percent confidence level. 

(a) (b) 

Figure  9   Calibration  Results: Headway  Distribution  for  Northbound  (NB) 
Movement at PIB@Medlock  bridge  Rd: MaxView  vs  VISSIM  

As a  final  calibration  step  minor changes were  made  to  the  signal  timing  splits and  vehicle  

extension  timers at  several  intersections to  better serve  the  synthesized  traffic volumes.   

6.3 MODEL VALIDATION: TRAVEL TIME 

With the car-following and free-flow parameters calibrated, it is important to check how 

closely the traffic in the model behaves compared to real world. For model validation, 

travel-time was used as the performance metric. The traffic on the PIB corridor is 

directional with the PM peak traffic direction being north; additionally, the later EVP study, 



 

 

 

 

 

  

            

       

  

          

            

            

                

        

         

            

            

               

     

               

           

  

 

   
 

         

     

  

       

       

will focus on the NB direction of travel. While this discussion will focus on NB travel, a 

similar process was undertaken for the SB direction with acceptable travel time 

performance. 

Checkpoints were placed at two intermediate points on the NB PIB route to divide 

up the corridor such that sufficient complete vehicle traces could be captured for the travel 

time computation. The average travel time at the checkpoints were summed to determine 

a total average travel time for the entire 6.2 mile stretch of NB-through route along the 

PIB. As a benchmark, weekday travel time data from (a) theRegional Integrated 

Transportation Information System (RITIS) (30) and (b) Google Maps™ (25) [recorded at 

5-min intervals during the 5-6 PM period on July 16, 2021] were used. The average RITIS 

travel time was 960 seconds, while Google Maps travel time averaged at 825 seconds. 

The travel time derived from the model came out to an average of 899 seconds. As per 

criteria set by Federal Highway Authority (FHWA)’s Traffic Analysis Toolbox (29), the 

simulated travel time should be within 15% of the field. The travel time in VISSIM lies 

within 15 percent of either of the data sources and satisfies the suggested validation 

criteria. 

7. EXPERIMENT DESIGN 

Once the baseline model calibration was completed, experiments were designed to study 

the impact of preemption on: 

a. EV travel-time, 

b. Travel-time of passenger cars on the mainline, and 

c. Travel-time of passenger cars on the side-street. 



 

 

 

 

 

  

            

            

            

          

           

            

             

              

             

            

            

              

       

 

   
 

       

             

         

          

          

           

     

           

          

The experiment studies the impact of EVP on a 45-mph speed limit signalized road 

during a period of heavy demand, especially on the NB route. The impact is evaluated 

with respect to strategies that address both the transition of the signal from normal 

operation to preemption operation and the transition from preemption operation back to 

normal operation. For the transition into preemption, an algorithm for flexible timing of the 

start of the transition is developed, rather than utilizing a fixed time or distance offset as 

typically deployed in the field. For the transition out of preemption a normal exit with 

service of the phase following the preemption phase in a normal cycle, is compared with 

an in-step exit where the preempt exits into the coordination pattern of the signal cycle. 

For this study, an EV must pass through an intersection during a green utilizing lanes in 

the correct direction of travel. That is, simulated EV behavior does not allow for running 

a red or passing through the intersection in the lanes of the opposing traffic. For each 

simulation run a single preemption event is modeled. 

8. Entry Transition 

VISSIM® allows external models for EVs, with specific geometry resembling a “firetruck” 

(31). One such model was used to create a vehicle class that was used for the preemption 

exercise. Presence detectors across the network are enabled so as to detect the 

presence of firetrucks selectively and the RBC controllers are programmed to enable 

preemption when the presence detectors are in an active state. 

To improve the performance of preemption, using real-time data available from field 

detectors and the CV infrastructure, a “dynamic preemption” (DP) algorithm is devised. 

In this algorithm, the queue-length of an intersection is monitored from the time the 

firetruck begins to approach the upstream intersection. Based on the queue length, a 



 

 

 

 

 

  

              

              

              

              

          

           

       

              

               

            

                

         

          

           

           

           

           

                  

            

 

           

               

              

decision is made about how far ahead in time the preemption needs to be triggered so as 

to ensure that not only does the firetruck avoid entering the back of a queue, it also goes 

through the intersection without having to slow down. Thus, a sufficient time must be 

allocated for the vehicles in the queue as well as those in between the tail of the queue 

and the firetruck to clear prior the firetruck arrival. Some transition time is also allocated 

for the signal controller to serve the current phase yellow, red-clearance, and any 

necessary in-progress pedestrian-walk phases. Thus, the preempt call time is calculated 

as follows. If “n” cars are present in the queue, assuming that the headway is 2 seconds 

and an additional reaction time (i.e., start-up lost time) of 4 seconds, the time taken to 

clear that queue would be (4+ 2*n) seconds. It is also assumed there are vehicles 

between the end of the queue and the firetruck that need to be cleared, so an additional 

2*n seconds are taken. This is readily acknowledged as a rough estimate, which should 

receive field fine tuning. Additionally, as the vehicle fleet becomes increasingly 

instrumented with CV technology, real-time data may be used to better estimate this 

additional volume. For the transition from current signal state to the preempt phase, 

another 5 seconds are taken. This results in an overall total of (9+4n) seconds for the 

advance placement of the EVP call prior the firetruck reaching the intersection. Therefore, 

in a corridor with a free flow speed of “v”, the preemption will be triggered at a distance of 

(9+4n)*v from the intersection, when the intersection in question has a queue length of n 

cars. 

In the simulation environment, the queue lengths were available as an output from the 

model. However, it is important to recognize that in a field deployment, the queue length 

will be an estimate rather than an observation. The queue length and the number of non-



 

 

 

 

 

  

            

          

        

         

   

 

   

 
           

           

           

          

               

           

           

             

                

             

                   

          

          

 
 
 
 
 
 

queued vehicles ahead of the firetruck will be estimated based on the real-time detector 

data from the current and upstream intersections, or from the location information in the 

Basic Safety Message from CVs (with sufficient penetration of CVs). This estimation is a 

non-trivial problem, and has been studied by other researchers (32; 33). It is not 

discussed in this paper for brevity. 

9. Exit Transition 

While the entry transition has a significant impact on the EV’s travel-time, the travel-time 

of the other vehicles are affected by the exit transition as well as the entry transition. With 

the default preemption algorithm in VISSIM®, the controller serves a defined set of exit 

phases or the next phase immediately after the preempt-phases, if no exit phase is 

specified. If a coordination plan is in place VISSIM® would then need to adjust the local 

cycle and splits to transition back into coordination. This is termed as normal exit in the 

VISSIM® RBC. Another possible option for the exit transition is in-step, in which the 

preempt exits into the coordination pattern of the signal cycle (34). In this exit transition, 

VISSIM® will exit into the current phase that would be running according to the local cycle, 

if sufficient time exists to serve the minimum green. If sufficient time does not exist it 

would exit into the next phase in the cycle, if a call exists. Finally, it will exit into the 

coordinated phase if the prior conditions are not satisfied. Underlying this logic is that no 

additional transition will be required to return to coordination. 



 

 

 

 

 

  

   
 

            

           

          

            

           

                 

    

 

 
                                                                                                                                

 
 

            
        

     

          

           

             

          

          

10. EV Routes

To ensure that the effect of the signal coordination, or rather the disruption thereof, is 

investigated in sufficient detail, the EV routes were chosen such that they passed through 

multiple preempted intersections along the coordination path. The GPS data from the EV 

collected as part of the effort was used to observe historical travel patterns and ensure 

that the path chosen was representative. The path chosen is shown in 

Figure 10 (a), (b), and (c) as a series of historical GPS points, on a map and as part of 

the model network in VISSIM®. 

(a) (b) 

Figure 10 The NB Firetruck Route chosen for the Study (a) Actual Firetruck GPS 
data: OpenStreetMaps™ (24), (b) Route on Google Maps™, (c) Static Routing 
Decision in VISSIM® simulation model. 

To summarize, the experiment consists of an investigation of three preemption 

strategies, (i) Preemption with normal exit, (ii) Preemption with in-step exit, and (iii) No 

Preemption. The “no preemption” case is treated as the baseline. Each of the 3 cases 

had 32 scenarios with different firetruck injection times, with 5 replications each, resulting 

in a total of 480 runs across all cases, scenarios and replicates. 

(c)



 

 

 

 

 

  

 

  
 

       
 

         

               

             

            

          

            

             

      

             

               

          

           

       

           

          

          

           

         

            

          

11. RESULTS 

11.1 Impact of EV arrival time 

Prior to considering the three preemption strategies above, a brief analysis is conducted 

to understand the impact of a request for preempt relative to the local cycle time. It 

expected that that the time at which a firetruck makes a preemption request, relative to 

the local cycle and coordination plan, is likely to affect the entry into and exit from 

preemption and the associated impacts on the traffic. This effect is explored by 

introducing a firetruck into the network at different simulation times in an effort to touch 

different points of the signal cycle of the first intersection (PIB at the Medlock Bridge Road) 

in the route given in 

Figure 10. As the cycle lengths of the signals are 160 seconds, 32 different scenarios are 

created, with a successive five second increment in the time of introduction of the EV into 

the network. To account for stochastic variability into the simulation, the exercise is 

performed using 5 random seeds. So, a total 32*5=160 simulation runs were conducted. 

For these runs, normal exit transition is utilized. 

Figure 11 (a) & (b) shows the effect on the side-streets through movement travel 

times at the first preemption-activated intersection of PIB at the Medlock Bridge Road 

intersection. The impact is measured from the preemption event to two cycles after the 

end of preempt. In each successive scenario (shown along the x-axis) the firetruck 

entrance into the network is staggered by 5 seconds, which does not necessarily correlate 

directly with a specific part of the original signal cycle (before preemption), but does 

ensure sufficient variability such that arrivals are distributed throughout the cycle. It is 



 

 

 

 

 

  

                

               

             

           

           

           

            

                

          

 

  
                                                                                    

 
                                                                                    

             

            

seen that the time of the preempt call relative to the local cycle may have a significant 

impact on the side street experience. As a sign of variation in mean travel time with 

firetruck arrival time, the mean travel time per scenario was observed to have a range of 

63 s and 51 s on the EB and WB through movements respectively. Another way of 

understanding this scenario-based distribution is the difference between the 25th and 75th 

percentiles, also termed as the inter-quartile range (IQR). IQR dictates the amount of 

spread for the middle 50 percent of data-points around the median (35). It was observed 

that the IQR for travel time spanned between wide intervals of [80 s, 195 s] and [76 s, 

176 s] on the EB and WB through movements, respectively. 

(a) 

(b) 
Figure  11  Variation  in  Travel  Time  for  side-street through  movement (PIB  @  
Medlock  Bridge  Road) for  (a) EB  Through  and  (b) WB  Through  with  Different 
Firetruck  Arrival  Times.  

The effect of the staggered entries on the travel-time of the firetruck (traveling the length 

of the corridor) is shown in Figure 12. Again, significant variability is seen, with the range 



 

 

 

 

 

  

                 

            

          

 

 

              
     

 
     

 
   

             

          

             

          

      

         

            

            

       

of mean travel time across scenarios at 42 s, while IQR spanned in the interval of [8 s, 99 

s]. Given the range of variability seen, all subsequent experiments include sampling over 

the range of potential preempt call placements throughout the cycle. 

Figure 12 Variation of Travel Time for Fire Trucks depending on the time of arrival 
of the vehicle into the network 

11.2 Dynamic Preemption vs Check-In Check-Out 

As shown in 

Figure 10 (b), the firetruck used in this experiment enters the network at the Southern 

part of the network and travels NB through 8 intersections, from the Medlock Bridge Road 

intersection to the Howell Ferry Road intersection, where it takes a right turn and leaves 

the corridor. Before further studying the effects of preemption, it is important to briefly 

discuss the merits of using the developed “dynamic preemption” (DP) algorithm as 

compared to a traditional “check-in check-out” (CI-CO) preemption strategy. For a CI-CO 

setup, a check-in detector is placed at a fixed distance from the intersection. When the 

EV reaches the detector, a preemption call is placed. The call remains active until the 

vehicle crosses a check-out detector (or times out), which is generally placed downstream 



 

 

 

 

 

  

          

             

           

           

           

        

           

         

           

           

            

        

             

             

          

        

           

           

             

            

        

           

       

of the intersection. The drawback of this setup is experienced when an EV enters the 

back of a queue that extends past the check-in detector. In this situation the EV does not 

reach the check-in detector to trigger the preemption call. Using the DP approach to 

determine when to place the call while the EV is much further upstream avoids this issue 

as well as allows time to flush any queue ahead of the EV. 

The trajectory plots in Error! Reference source not found. provide a visualization 

of the difference between these methods. The color in the EV trajectory represents the 

GREEN/AMBER/RED signal state of the next downstream intersection at the 

corresponding time. The blue line running in parallel to the trajectory represents the time-

span of an active preemption call by the firetruck while traveling along its trajectory. Error! 

Reference source not found. (a) depicts one such scenario, with no preempt. It can be 

seen that the firetruck enters queues at various intersections (the vehicle stopping is 

represented by a flat line in the trajectory). Figure 13 (b) is for the same firetruck entry 

time, with preemption enabled with normal exit and a CI-CO implementation, where the 

detector is placed on an approach 1000 ft upstream of the intersection or immediately 

after the upstream intersection, whichever is less. Figure 13 (c) depicts the firetruck 

trajectory using DP to place preemption calls. The drawback of CI-CO is evident at the 

very first intersection. The firetruck is not able to place the call sufficiently early to allow 

for the queue to clear, instead being delayed in the queue while the downstream vehicles 

clear. The DP approach is able to clear the queue prior to the firetruck arrival, resulting in 

a significant reduction in delay. This same behavior reoccurs several times throughout 

the firetruck’s trip. Over all, for the given arrival time and random seed in this example, 

CI-CO provides an 85s advantage over no-preempt while DP provides a 113s advantage, 



 

 

 

 

 

  

           

   

 

   

                                                                                                           

 

  
 

            

            

          

            

         

         

            

         

       

            

            

providing a strong demonstration of the advantages of an approach, such as DP, 

leveraging CV data. 

(a) (b) (c) 
Figure  13  Difference  in  Firetruck  Trajectory  in  the  PIB  VISSIM®  network: (a) 
preemption  disabled,  (b)  preemption  enabled  with  normal  exit  - CI-CO,  (c) 
preemption  enabled  with  normal  exit  - DP  

11.3 Corridor Analysis 

Within this study the effects of preemption are studied via its impact on the travel times. 

The best EVP strategy would be one that would minimize EV delay, while also minimizing 

the negative effects on the other traffic, especially on the cross-streets (12). While the 

negative impacts of EVP are likely to be more pronounced on the side streets, it is 

possible that negative impacts may also be experienced by vehicles on the preemption 

approach. Therefore, this effort considers both the preemption approach and the cross-

streets. To avoid the confounding effects of turn-related delays due to mixing of through 

and turn movement, the measurements in this study are made for vehicles involved only 

in through movements for both the main-line and cross-streets. 

To study the impact of preemption on travel time, the results are aggregated over 

the 32 EV arrival times distributed over the cycle at the initial intersection, with five 



 

 

 

 

 

  

         

           

           

               

              

         

           

            

           

  

          

             

            

             

          

         

            

            

         

        

         

       

          

replications of each, and are considered for three preemption strategies: no-preemption, 

normal exit transition, and in-step exit transition. First, Error! Reference source not 

found. (a) shows the travel time for non-EVs (i.e., general traffic) traveling the same route 

as the EVs. The travel time is reported from the initiation of the preemption call to the end 

of the call, then in 160 s intervals, allowing for visualization of the dissipation of any effect 

over multiple cycles. A vehicle’s travel time is reported in this analysis when the vehicle 

started its trip. Error! Reference source not found. (b) shows the route travel time for 

the EVs. Figure 15 (a) & (b) are travel times for two representative cross streets, again 

aggregated over the 32 arrival times with 5 replicate trials, for the three preemption 

strategies. 

Error! Reference source not found. & Figure 15 utilize hybrid boxplots. The red 

square dots represent the mean, and the top and bottom of the solid box represent the 

75th percentile and 25th percentile, respectively. The black line drawn on the solid box is 

the median; the whiskers around the box span within 1.5*IQR of the median and the points 

that lie beyond the whiskers are outliers (36). As seen in Error! Reference source not 

found. (a), both the normal and in-step preemption strategies show significant 

improvement in travel time for the non-EVs. As the signals return more quickly to 

coordination when utilizing in-step exit transition, it is also seen that the non-EVs have 

the best performance when this transition strategy is utilized, particularly in the cycles 

immediately after the preemption call is placed. However, the positive effects of 

preemption is diminished as time passes and the gap between no-preemption (green 

boxes) and the preemption-enabled scenarios (yellow and blue boxes) is reduced 

progressively with the passage of each cycle. Error! Reference source not found. (b) 



 

 

 

 

 

  

         

          

              

            

            

            

               

            

              

               

        

            

          

 

summarizes the travel time variation for the EV in the network under different preemption 

scenarios. The average travel time for no-preemption, preemption enabled with normal 

exit, and preemption-enabled with in-step exit, are 666 s, 526 s and 506 s, respectively 

with 140 s average travel time saved by preemption with normal exit compared to no-

preemption. Furthermore, there is an additional improvement in travel time of 20 s when 

in-step exit is used as opposed to normal exit. Another positive aspect of preemption was 

a reduction in the variation of travel time as reflected by the reduced IQR, seen in both 

exit transition strategies. With the primary focus being on reducing EV delays, the choice 

of the strategy should be dictated by the optimal strategy for the EV. In this case, it was 

found that the in-step exit resulted in a small improvement over the normal exit, which is 

likely an effect of reduced interactions with other vehicles from the traffic stream, rather 

than a direct correlation with the signal timing. Hence in-step represents the superior 

strategy, within the constraints of the field conditions replicated in this study. 



 

 

 

 

 

  

  

 
                                                                                

             

        

             

            

           

 

 

(a) (b) 
Figure  14  Boxplots  depicting  variations  in  time  taken  to  travel  the  entire  NB  
Firetruck  trajectory: (a) Non-EVs  travelling  since  the  arrival  of the  Firetruck,  (b)  
Firetrucks.  

Figure 15 (a) & (b) show how the travel time on the side streets is impacted by the 

three preemption strategies. As expected, the travel time increases immediately after the 

placement of the preemption call with the impacts rapidly dissipating. In addition, there is 

no clear trend between the in-step exit and normal Exit. This lack of one strategy clearly 

providing improved side street service was seen throughout the corridor side streets. 



 

 

 

 

 

  

  

 
                                                                           

     
 

       

           

             

             

            

            

             

           

          

(a) (b) 
Figure  15  Travel  time  comparison  with  varying  preemption-design: Through  
movements  for  the  side-streets  during  preemption  and  progressively  after  
preemption: (a) WB-Through  movement at PIB  @South  Berkeley  Lake  Road,  (b)  
EB-through  movement at PIB  @North  Berkeley  Lake  Road  

   

12. CONCLUSION AND FUTURE WORK 

This study demonstrates the positive effects of EVP combined with CV technology by 

implementing a DP architecture in a microscopic simulation model, using travel time as 

the primary metric. Preemption with in-step exit transition led to a 24% (160 s) reduction 

in average travel time for the firetruck. The non-EVs sharing the same path as the firetruck 

also received significant reduction in delay as a by-product of the preemption. When 

considering the side-street, it was observed there is a disruption in travel behavior on the 

side streets, leading to increased travel time with preemption. However, that effect on 

average travel time dissipated quickly. Also, neither the in-step or normal exit transitions 

proved to provide consistently superior service to the side streets. Therefore, considering 



 

 

 

 

 

  

             

        

        

           

             

            

           

          

          

         

             

          

             

          

             

      

         

          

                 

           

         

             

       

the effects on all traffic as a whole, preemption with in-step exit is a more favorable exit 

strategy for the network and conditions studied. However, generalization of these results 

will require additional study of other corridors and under varying traffic conditions. 

Several improvements could be made on the experiment design that could provide 

for a more robust study. First, rather than choosing a mainline EV route, the route could 

be a mix of the main and side-streets. Second, scenarios with arrival of multiple EVs at 

an intersection should be explored to understand the interaction of overlapping 

preemption request calls. This could open doors to new possibilities of studying varying 

cases of delays in EV travel caused by preemption on the opposing movements. Third, 

there have been several studies tackling path planning problems for EVP (19-21). Since 

it was known the firetruck will only be traveling on the mainline utilizing a designated route, 

this is not included in the current experimental architecture. However, a probabilistic 

approach could be taken where the next intersection for a vehicle is predicted based on 

historical pathways and preemption call could be placed accordingly. Fourth, currently 

efforts are also being made to extend this study to use Software in the Loop Simulation 

(SILS) using Intelight’s MaxView® Advanced Traffic Management System (ATMS) 

software (37). Lastly, while successful, the DP algorithm developed is a fairly simple 

heuristic. Additional refinement of the algorithm is merited. For instance, it was seen that 

the time of the preempt call relative to the local cycle can make a significant difference in 

performance. This may potentially be considered in setting when to place the call. 

Beyond the EVP experimental design and algorithms a further enhancement to the 

model, to better represent the behavior in the field, would involve modeling of the potential 

pull-over behavior of non-EVs, whereby the vehicles move over to the shoulder or the 



 

 

 

 

 

  

               

           

            

          

         

          

           

                  

          

            

 

         

           

           

         

 
 
 
 
 
 

  
 

          

        

          

            

adjacent lane to create a clear path for the EV to bypass a queue. While the objective of 

the preemption is to avoid the need for such behavior, there are certainly conditions under 

which the congested conditions on the roadway might prevent the flushing of the queues 

at all intersections and pull-over behavior of the non-EVs may be necessary. A simulation 

environment modeling this behavior will allow for the study of strategies in gridlocked 

congestion situations. Additionally, for situations where the intersection is close to a fire 

station, there may not be sufficient time to clear the intersection. Consideration may need 

to be given to taking the intersection into an all-red state and allow the EV to go into the 

opposing lanes to cross the intersection. A modeling effort for such contraflow situations 

would allow for an evaluation of such strategies in addition to the strategies discussed in 

this paper. 

While there are limitations to the work presented here, this effort provides and 

critically evaluates a novel idea of early detection of EV, as well as explores the effect of 

different preemption exit strategies, which could be a baseline architecture for informed 

real-time decision making integrating CV technology into the preemption strategy. 
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Appendix B: Technology Transfer 
An Appendix should be included in this final report to document the Technology Transfer 

activities conducted during the project term, accomplishments towards T2 adoption and 

implementation by relevant stakeholders, as well as any relevant post-project T2 plans. 
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